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Abstract

This article presents a new method to calculate eigenvalues of right triangle
billiards. Its efficiency is comparable to the boundary integral method and
more recently developed variants. Its simplicity and explicitness, however,
allow new insight into the statistical properties of the spectra. We analyse
numerically the correlations in level sequences at high level number@®)

for several examples of right triangle billiards. We find that the strength of
the correlations is closely related to the genus of the invariant surface of the
classical billiard flow. Surprisingly, the genus plays an important role at the
guantum level also. Based on this observation, a mechanism s discussed which
may explain the particular quantum—classical correspondence in right triangle
billiards. Though this class of systems is rather small, it contains examples
forintegrable, pseudo-integrable, and non-integrable (ergodic, weakly mixing)
dynamics, so that the results might be relevant in a more general context.

PACS numbers: 03.65.Ge, 03.65.Sq, 05-456.

1. Introduction

Polygon billiards have been studied both classically and quantum mechanically for roughly
20 years now [1]. These systems are situated right on the borderline between integrability
and chaos. They are usually divided into two classes: the rational polygon billiards where
all vertex angles are rational multiplessf and the irrational ones where at least one vertex
angle is an irrational multiple of.

In the first case there exist two constants of motion, so that one would expect integrability.
However, due to singularities in the billiard flow, the invariant surface of the flow is not
necessarily a torus (with genus = 1), but may be of a more complicated topology
(1 < g < o0). This produces a very complicated classical dynamics (see [2—4] and references
therein). The systems are called integrable # 1 and pseudo-integrable [1] otherwise.
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In the second case (the irrational polygon billiards) there is no second constant of motion.
These systems are typically ergodic [2] and probably weakly mixing [5, 6], though the
Kolmogorov—Sinai entropy [7] is always zero.

Quantum and semiclassical calculations have been performed from the very beginning
[1, 8-10], but only recently [11-13] has it become possible to calculate sufficiently large level
sequences at sufficiently high energies, such that correlation properties could be analysed
directly. There are fundamental open questions:

(i) Do the correlations in the spectra of polygon billiards eventually become stationary at
sufficiently high energy?
(ii) Are there families of polygon billiards with common statistical properties (universality)?
(i) Whatis the signature of classical pseudo-integrability in the quantum spectrum (quantum—
classical correspondence)?

On the one hand, there has been numerical evidence [13], that at very high energies the
spectraof irrational triangle billiards are statistically similar to spectra taken from the Gaussian
orthogonal ensemble (GOE). On the other hand, based on the numerical study of the spectra
of several rational right triangle billiards, it was proposed that pseudo-integrability implies a
so-called ‘intermediate statistics’ [12]. For the nearest neighbour distribution [14] this means:
linear increase at small spacings (as in the GOE case) and exponential fall-off at large spacings
(as for a random Poissonian sequence). Intermediate statistics has also been found in the
context of disordered systems at the metal-insulator transition point [15-17], which might
indicate some relationship between both classes of systems.

This paper is mainly concerned with question (iii). We consider the one-parameter family
of right triangle billiards, labelled by the value of the smallest vertex angte® < 7 /4.

For this class, a secular equation is derived, which identifies the eigenvalues as zeros of
the determinant of a particular matrk(E). Though the matrix is infinite, its elements are
given explicitly by very simple expressions. This mak&g ) an ideal point of departure for
numerical and analytical studies.

The most obvious characteristic of rational polygon billiards is the ggofithe invariant
surface of the classical Hamiltonian flow (the irrational polygon billiards can be included,
settingg = o0). Hence, we will investigate in detail the relation betwgemd the correlations
in the quantum spectra. In the numerical part, level sequences are calculated at absolute
level numbers>10° for various examples of right triangle billiards. This provides valuable
complementary information to recent results from Bogomeainy/ [12]. In the analytical
part, the matrix(E) itself is considered. Thougki(E) is a pure quantum mechanical object,
itis shown thag andy (which is closely related tg) play a crucial role for iterated mappings
of the formW¥ (n) = K" (E)W¥(0). Based on this observation, a mechanism is proposed, which
can explain the connection between the gepaasd the correlation properties of the quantum
spectrum.

In section 2 a secular equation is derived for the calculation of the eigenvalues of right
triangle billiards. It is used in section 3 to obtain and analyse the level spacing distributions
for several right triangles. In section 4 we analyse the properties of the nkéitixtself, and
discuss the roles of the two classical paramegeandy in this context. The conclusions are
presented in section 5.

2. Secular equation

Our point of departure is the observation that any right triangle can be obtained by cutting an
appropriate rectangle along its diagonal. This is used to derive a secular equation of drastically
reduced dimension for the eigenvalues of the right triangle billiard.
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Let Hg be the Hamiltonian for the rectangle billiard with sideandb. Fixing the length
scale byi? + b? = 72, the anglev: tana = b/a suffices to characterize the system completely.
Choosing an arbitrary corner of the rectangle billiard as the origin of a Cartesian coordinate
system, its eigenvalues and the corresponding eigenfunctions may be written as follows:

1 n2 m2
= | ——+ —— >1 1
e(n, m) 2<co§a sin2a> . m @)
2 T T
Om(x, y) = ——sin( — sin( — . 2
(3.) = —=sin(nxJsin( 5 m) )
Consider the total HamiltoniaH:

H=Ho+nW W:S(g—%) )

where the potentia)W is used to cut the rectangle billiard into two congruent right triangle
billiards (a similar cut potential, though in a different context, has been used in [18]). As
increases from 0 too, the spectrum off changes from the spectrum of the rectangle billiard
(1) to the doubly degenerated spectrum of the two triangle billiards. Foy,ahg Hamiltonian
H is invariant under point reflection, so that the matrix representatidéhinthe eigenbasis of
Hy is block diagonal. One block is spanned by the odd basis St@&iggn + m: odd and the
other by the even ond®,,,,| n + m: ever}. Both blocks can be diagonalized independently,
leading to the same sequence of eigenvalues, which causes the degeneracy mentioned above.
In what follows we will work in the odd basis only. Lgt=n + m andp = n — m, and
order the states (2) with increasiggand for equal with increasing. Consider the subset
of states with fixedj andp = —¢ + 2,..., ¢ — 2 as one block. Then truncating the basis at
a maximalg-valuegmay one obtaind/ = (gmax —1)/2 blocks withg—1 states in each block
(note thayy andp are odd). In total this gived = (¢2,,— 1)/4 basis states. In this reordered
basis, the matrix elements 8f are given by

a b
Wapia'p = /O dx/O dy @pm (x, ¥) pry (x, y)5<;—c - %)
1
= 5{5(|P| —1p'D+8(q—1p )+ —|pl)+8(q —q)} (4)

wheren = (g + p)/2,m = (¢ — p)/2 (and similarly for the primed indices). For givemax

the truncated matri¥’ V) has only two distinct eigenvalues: 0 abd+ 1, and the eigenspace

of the latter has dimensioi (in other words: rankly™)] = M). All eigenvectors with
eigenvalug/ + 1 can be calculated explicitly, and after proper normalization we collect them
(as column vectors) in the rectangular matrix

0 ng <k
L k%l ng =k
|/ . ng>k n,<k+1 5
qp:k JM+1 k(k+D) q P )
— k%l ng>k np=k+1
0 ng>k np>k+1

wherek =1,..., M,ny = (¢ —1)/2andn, = (|p| +1)/2. The truncated total Hamiltonian
may now be written as follows:

HNM = BV +qm+ 1y vvT. (6)
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Dividing the Schédinger equationE — H™)w = 0 by E — H", one arrives, after a few
algebraic manipulations, at the desired secular equation. It determines the eigenval(@s of
as the zeros of the following determinant:
~ . 1
0= det(1+nK(M)(E)> EMEy=mm+yvT—=v. ()
E—H"
0
Taking the limitn — oo, the unit matrix in the first equation of (7) can be neglected, and one
gets

detk ™ (E) = 0. (8)

The advantage of this equation is the reduced dimen&loc N = M(M +1). Such a
reduction is typical for a boundary integral method (see, for example, [19]). The matrix
elements ok ™) are given by the foIIowing expression:

dmax

M
R =m+1y Z ‘”“q+;”’; i g, p: odd. 9)
q= lp_—q+2 22 )

Being only interested in the zero eigenvalues iof)(E), any (symmetric) similarity
transformatiork ™ = LT K" [ may be applied. The following choice farsimplifies the
problem considerably:

1 -1

L =diagd, ..., 1/M) diag(l,...,,/M(M+1)). (10)
o
1

The resulting matrix (M)(E) is defined in the same way &%E) in the equations (11)—(13)
below, but with the coefficient®; = Y-™,d;;. Only in the limit M — oo, the expression
for D; simplifies to the formula (14), as can be shown using the partial fraction expansion of
the cot function [20].
To summarize, the right triangle spectrum is calculated using the secular equation
det[K(E)] = 0, whereK(E) is constructed as follows:
K(E)=Kp(E)+Kp(E). (11)
The matrix elements &K are given by
[KFlij =dij —d; j+1 —di—1,j +di—1,j+1
1
di; =d +d;; dt =
Y CA Vo e—q?2— p2+2gpcos
where the scaled energy = E/(2sirf2a), ¢ = 2i+1, andp = 2j—1. Note that
g%+ p? F 2gpcog20) = 2 sirf(2x) e[(g + p)/2, (¢ F p)/2], thusg andp may still be regarded
as auxiliary quantum numbers for the rectangle billiHed The matrixKp, is tridiagonal:
[Kpljj = Dj+ Dj+1 [Kpljj+1=[Kplj+1j = —D; (13)
with the coefficientd; given by

(12)

7 sinTw
/7 2w(cosnw + cosmp cos ) ¢ o 4

Even thoughw becomes imaginary for large valuespmfthe affected functions sin and cos
convertinto sinh and cosh, and finally the coefficiBptemains real. Its asymptotic behaviour
forlargejis D; ~ m/(2|w|).
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This result is the basis for the analysis in sections 3 and 4. The infinite niiix as
defined in (11)—(14), completely determines the spectrum of any right triangle billiard as the
set of zeros of its determinant. For numerical purpokés) must be truncated (see below),
but one may get important information also from an analysis of the infinite miggiy itself.

For numerical calculations (section FJ(E) is truncated, keeping only those elements
Kij) for which i, j < M. For meaningful resultsM must be at least so large that
P2ax > 2¢, pmax = 2M — 1 (see the definition gf above equation (13)). Experience shows
that for accurate results (error less than 1% of the mean level spacing), one should increase
the size of the matrix further by approximately 10%. The zeros ofkd£l] are identified
calculating the smallest eigenvalue in magnitude as a functidn tfsing a standard root
bracketing algorithm [21], we find those points at which the smallest eigenval&@¢m)f
passes the zero axis. The eigenvaluek (@) are strictly decreasing functions Bf and this
facilitates the root finding considerably. It allows us to take rather large steps (of the order of
the mean level distance) without running the risk of losing any roots.

3. Level spacing distributions

In the case of polygon billiards, the gengisf the invariant surface of the Hamiltonian flow

is the most obvious parameter to characterize the classical dynamics [2]. Hence, one may
expect an influence gf on the level statistics of the corresponding quantum system. In this
section we investigate numerically whether the level statistics show a systematic dependence
ong. For several rational and one irrational right triangle, we calculate sequencedeidie

starting at the absolute level numbeP{W/eyl's law is used to determine the corresponding
energy). Note that even in this energy region, the level statistics are usually not stationary.
This has been demonstrated in [13] for several examples of rational and irrational triangle
billiards. This should be kept in mind in the discussion of the numerical results.

In the case of right triangle billiards, there is another relevant parameter intimately related
to g (see appendix A). This ig, the smallest integer such that 2/ € N (in the irrational
case, we sef = o0). Itis shown in appendix A that is the smallest number of rhombuses
which must be glued together to form the invariant surface of the billiard flow. Moreover, we
find thatg = int(y/2). Hence,y implies a finer classification of the right triangle billiards
thang does.

Up to an irrelevant energy scale, all right triangles may be labelled and identified through
their smallest vertex angle o < 7 /4. For rational right triangles one may also use the pair
ofrelatively prime integers/q = o /7. Thisis doneintable 1, where all rational right triangles
with g < 7 are arranged with increasingin the vertical direction, and with increasing
in the horizontal direction. The parametgr is taken from [12], where it is introduced as
an ‘arithmetical genus’. The entries underlaid with a grey shade have been analysed there.
The grey-scale corresponds to different valuegofas indicated in the last column. Further
below, we will compare our results with those of [12].

We analyse the level statistics by means of the nearest neighbour spacing distijtion
(the spacings are normalized to unit mean). Recently, the question has been raised whether
the rational right triangles show intermediate statistics (i.e. a linear increase atssamndll
exponential fall-off at large). A simple analytical example is the so-called ‘semi-Poisson’
distribution [12]:

Pspls) = 4s e, (15)
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Table 1. All rational right triangle billiards withg < 7, referenced by their smallest vertex angle

a/m = p/q, and ordered with respect gpandy. The first two entries fog = g, = 1 are the

only integrable cases. The shaded entries refer to those cases analysed in [12], and the grey-scale
corresponds to the value gf (introduced there) as indicated in the last column.

" J[e]

Y
«Q
<

2 14

1: 1
5
4

2: 0 o o
6

3: 3
7 14 (U7 314
8 116 3/16

4: 4
9 118 19 318 29
10 : 1/20 3/20

5: >5
1 Y22 111 322 2111 522

6 12 124 5/24

113 126 113 3/26 2113 5126 313

- 14 1/28 3/28 5/28

115 130 115 2/15 7/30

Here, Psp(s) issimply used as a convenient referenceto comparewith. Thefollowing quantity
isplottedin figure 1:

Al(s) = fo ds’ { Puum(s’) — Pep(s")} (16)

The theoretical curvesin figures 1(a) and (b) show the result for an infinite GOE spectrum,
where Pnum(s’) is replaced by the corresponding level spacing distribution (taken from [22]).
While figure 1(b) shows the raw numerical data curves for various right triangle billiards,
figure 1(a) showsthe corresponding smoothed curves, in order to alow theidentification of all
the cases shown. For the smoothing, ‘ natural smoothing splines have been used, as provided
in[23].

Let usfirst focusonthecases. p/g=1/8,1/5,1/12,1/7 and 3/16 (which correspondto a
successiveincrease of y from4to8), ando/7 = (3—+/5)/4 (Wherey = o). The AI-curves
for these cases are plotted in figure 1(a) with a solid line and dashed lines of different dash
lengths. Together with theresultsfor the GOE and the Poisson ensemble (uncorrelated random
sequence), they roughly span aone-parameter family of curves A I; (s). The parameter o may
becalled ‘ correlation strength’ and it may be calibrated, requiring that o = 0 givesthe Poisson
result (its graph is plotted in figure 4), o = 1 the GOE result and o = 1/2 the semi-Poisson
result. Note that A1, (s) isintroduced solely to facilitate the discussion of our results, so that
it is not necessary to be more specific.

The AT curve for the irrational right triangle billiard comes closest to the GOE resullt.
However, it remains almost in the middle between the semi-Poisson case and the GOE case
(0 =z 3/4). Then follow the cases p/q = 3/16, 1/7 and 1/12, for which o decreases in
approximately equal steps. The Al curvefor p/g = 1/12 isclosest to the semi-Poisson result
(0 =~ 1/2). The last two curves with p/q = 1/5 and 1/8 tend dlightly towards the Poisson
result. They are so close to each other that we would assign the same correlation strength to
both of them (¢ < 1/2). In al, we may say that the correlation strength o increases with
increasing y .

Finally, we included two more cases: p/q = 1/10 and 3/14. In figure 1(«a) the respective
Al curves are plotted with dotted lines. Thus, we can compare the A7 curves for the 1/5-
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0.04 @ T

Al(s)

0.04 (b) T

-0.08 - 7

Figure 1. Difference Al(s) of the integrated level spacing distribution to the semi-Poisson case.
Al(s) is plotted for various values of « as indicated in (a). The abbreviation ‘irr’ refers to
o = m(3—+/5) /4. Whereas (b) shows the raw data, («) shows the corresponding smoothed curves
(details in the text). The GOE expectation (N — oo limit) isplotted in (a) and (b) as adotted line.

and the 1/10-triangle (y = 5), and the AI-curvesfor the 1/7- and the 3/14-triangle (y = 7).
Both cases show that evenfor right triangleswith the samevaluefor y, therespective Al curves
may differ considerably. Therelation between y and the correlation strength is apparently not
very strict (at least not in the energy range considered).

In order to check that our conclusions do not depend on the particular choice of the corre-
lation measure, we repeated the analysis above using the number variance =2(/) [14] instead
of Al(s). Theresultswere perfectly compatible, so that amore detailed discussion is omitted.

In the numerical analysis presented here, we concentrate on right triangle billiards with
small valuesfor g and y. Themainreasonisthat thereiscertainly an energy scale below which
the quantum system cannot possibly ‘recognize’ whether the two hypotenuse angles o and
are rational or not. Without any knowledge about this scale, small g triangles are probably
the more reliable examples for the study of quantum signatures of pseudo integrability.
Hence, the triangles for which we can compare our results with those of [12] are only afew:
p/q=1/8,1/5,1/12and 1/7.

Theresultsobtainedin[12] agree with those presented hereonly up to acertain qualitative
level. Beyond, we find that the correlation strength has decreased considerably in almost all
cases. This is due to the higher energy region considered here which may result in the
rationality of the hypotenuse angles being more important. However, the Al curvesof thefirst
group of right triangles (with 4 < y < 6) changed much less then the others, such that the
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Figure 2. Portrait of the matrix K(E) for « = 7 /5, and E = 1.26 x 10%. Thegrey scale corresponds
to the absolute value of the matrix elements.

separation between both groups has decreased. It seems that this separation was decisive for
the introduction of the arithmetical genus g,. The fact that this separation has become much
smaller now indicates that g, is probably not an appropriate alternative for g.

According to the numerical results presented in this section, it is possible to order the
right triangle billiards with respect to the strength of the correlations found in their spectra,
which coincides with that of increasing y. This finding confirms the general conjecture that
the genus of the invariant surface of the classical billiard flow determines the strength of the
spectral correlations on the quantum level. Though the spectral correlations are apparently
not stationary at currently accessible energies, the ordering seems to be energy independent
aslong asthe level sequencesto be compared start with the same absol ute level number.

4. The elliptic map

In the first part of this section it is shown that the parameters ¢ and y (see appendix A)
associated with the classical dynamics of right triangle billiards are important characteristics
of thematrix K(E) itself. On the one hand this may be surprising, because K(E ) arose from a
pure quantum mechanical approach (see section 2), but on the other, it is a strong indication
for the importance of classical pseudo-integrability on the quantum level. In the second part,
we present a tentative explanation for the dependence of the spectral statisticson g and y .

In figure 2 the matrix K(E) is portrayed for atypical case. The grey scale corresponds
to the absolute value of the matrix elements. It can be seen that most of the matrix elements
have vanishingly small absolute values. Large absolute values can be found only aong the
diagonal and thefirst off-diagonals, which are due to Kp, and on a‘ moon'’ -like structure due
to Kr (see equations (12)—(14)). The matrix elements[ K ];; become large whenever the pair
of integers (i, j) is close to the zero-line of one of the two functions

Sr(x,y) =e—4<x2+y2:|:2xy0052a) a7

wherex, y arereal and positive, and e is the scaled energy as used in equation (12).
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ag N /T >
ay > Tttt
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Figure 3. Schematic representation of the mapping y1 = K (E)Yq (for details see text).

Theaction of K(E) on alocalized state may be described schematically by adoubleval ued,
symmetric map as shown in figure 3. The square in the middle represents the matrix K(E) (cf
figure2). Aninitial state yo localized at agiven value agismappedto y1 = K (E)yo localized
at {ag, a_1, a1}, wherea_1 and a; arethetwo solutionsof theequation f.t (ao, x) = 0, forx > 0.
Hence, the map M associated with K(E) may be defined asfollows: {a_1, a1} = Mag. Let us
calitthe'elipticmap’. Dueto f(x, y) = f(y,x),a0 € Ma_j1andag € Ma1. Consequently,
an orbit of such amap may be viewed as a doubly connected chain:

/\a_zf\a_lf\a

e oo d_3 0 aj ar a3z « .. (18)
N NP N4
According to that picture, the n-fold image y, = K(E)" yo has localization peaks at the
positions {a_,, ..., ao, ..., a,}. Surprisingly, M is isomorphic to the following extremely
simple map
Yn+l = @p £ 200 (19)

wherethe result should be taken modulo iz, such that it remainsin theinterval [ — /2, 7/2).
This can be seen, using the following parametrization of the curve fi (x, y) = O:

<9yf ) _JE <39” (5 - Z“C; 52)008@ - 2‘“) 0 €[-n/2,7/2). (20)

Replacing y by an arbitrary point a,, of themap M, one getsthe corresponding pair of conjugated
angles: cos(+¢,) = a,. Replacing x by a,, onefindsthat +-¢,, must be mappedto +¢, — 2«
(mod ). It follows that

ap = COS(L@n)
May = {an—1, an+1} = {CO£(pn — 200)], CO £ (g, + 2]} .

From equation (19) it follows that any orbit is restricted to a set of y points, where y isthe
smallest integer such that 2« y /7 € N. Itisthe same y whichisintroducedin appendix A as
the number of rhombuses forming the invariant surface of the billiard flow. Furthermore, the
periodicity of the map M isint(y /2) which isjust the genus of that invariant surface.

Here, in the second part of this section, we discuss a mechanism which can explain the
correspondence between the correlation properties of the quantum spectrum and the classical
parameter y. Theline of reasoning is asfollows:

(21)



8290 T Gorin

1. The correlation properties of the triangle spectrum at a given energy E are closely related
to the correlation properties of the eigenvalues of K(E) in the vicinity of zero.

2. At sufficiently high energy, Kp (11) can be considered as a random tridiagonal matrix
with eigenstates which are typically localized.

3. Thematrix K¢ (11) has such aform that repeated multiplications of an initially localized
state with K(E) produce an increasing number of copies at different positions. The
positions are given by the elliptic map M.

4. If o isrational, al orbits of the elliptic map are periodic with period g and restricted to y
points. This leads to an approximate foliation of the Hilbert space into weakly coupled
subspaces. For any irrational «, the elliptic map is ergodic, and al basis states of the
matrix K(E) are strongly coupled.

Point 3 has been treated in thefirst part of this section. Theremaining statements are discussed
below.

Correlation properties of the eigenvalues of the matrix K(E). According to the secular
equation derived in section 2, the triangle eigenvalues are given by those energies at which at
least one eigenvalue of K(E') becomes zero. Therefore, it seems plausible that the correlation
properties of the eigenvalues of K(E) close to zero and the triangle eigenvalues are related.
To verify this, we calculate the spacing distribution for those two neighbouring eigenvalues
which have opposite signs (without unfolding). Thedistributionisobtained from 10 spacings,
taken at equidistant energies, with the step size adjusted to the mean level spacing of the
corresponding triangle spectrum.

In figure 4 we compare the results. In the rational case, figure 4(a), as well asin the
irrational case, figure 4(b), the Al(s) curves for the eigenvalue pairs of K(E) and for the
triangle spectra differ remarkably, though in figure 4(b) the agreement is somewhat better.
However, at least qualitatively, the results are as expected. Intherational case, figure 4(a), the
eigenvalue statisticsfor K(E') show indeed very weak correlations, much weaker even than the
corresponding triangle spectrum. This can be seen from the Al(s) curve which clearly tends
towardsthe Poisson result (notealso thebehaviour at larges). Intheirrational case, figure4(b),
both curves show relatively strong correlations.

Localization of the eigenstates of Kp. Thematrix Kp isconstructed in asimple manner from
the coefficients D; (see equations (13) and (14)). These oscillate as functions of j, the index
of the basis of K(E), more and more rapidly while p? approaches 2¢. From a statistical point
of view, it then seems permissible to replace the arguments of the functions sin and cos by
appropriate random variables. Even though the statistical properties of the matrix elements
are very complicated, one may expect Anderson localization [24].

In figure 5 we show, for atypical case, a series of eigenstates of Kp(E) ordered by their
respective eigenvalues. Only those states with eigenvalues in a small interval around zero
are shown. Many eigenstates are apparently localized. However, others are not, and spread
over awide range of basis states. Usually those fluctuate only weakly and slowly, and their
eigenvalues decrease very slowly with energy (not shown). Their roleis till unclear, and will
be the subject of future studies.

Foliation of the Hilbert space. Acting repeatedly with K(E) onaninitially localized state yo,
the first ¢ images will spread and localize at points {ao, ..., a, 1} (herea, _; isidentical to
a_1), asdiscussed in the first part of this section. Then, due to the periodicity of the elliptic
map, subsequent images spread only slowly away from these points. In the ideal case the
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0.15 T

~0.05 B

-0.05

Figure 4. Difference of the integrated level spacing distribution to the semi-Poisson case. In (a),
Al(s) is plotted for the rational right triangle billiard with «/7 = 1/8, in (b) for the irrational
onewith o/ = (3 — +/5)/4. The solid lines show the result for neighbouring eigenvalues of the
matrix K(E) and the dotted lines show the result for the triangle spectrum. The dashed lines show
the theoretical curves for the Poisson case (long dashed lines) and for the GOE case (short dashed

lines).
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Figure 5. The eigenstates of Kp(E) with eigenvalues close to zero for a typica case. On the
left, the absolute value of the eigenvector coefficients is plotted as a function of i, the index
for the basis of K(E). On the right, the corresponding eigenvalues are plotted as a bar graph.
o« =m/5E =15x 10°.
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spreading would stop due to Anderson localization, giving rise to an invariant subspace. In
the same way, an initial state localized in a different part of the Hilbert space would lead to
another invariant subspace, and so on—until possibly the whole Hilbert space would have
been decomposed into invariant subspaces. In the real system, such afoliation of the Hilbert
space occurs only approximately, and the subspaces become weakly coupled. Nevertheless,
one may expect that correlations are to some extent suppressed due to this mechanism.

For irrational «, where the elliptic map is ergodic, an initialy localized state will spread
out (by repeated multiplication with K(E)) into the whole Hilbert space. No foliation of the
Hilbert space can occur, and one should expect correlations of similar strength asin the GOE
case.

5. Conclusions

We derived anew kind of secular equation for the determination of the spectraof right triangle
billiards. It involves the diagonalization of the matrix K(E) which has a particularly smple
and transparent structure. Based on this equation we cal culated spectraat level numbers >10°
for various examples of right triangle billiards, which shows the efficiency of the new method.

We found a clear correspondence between the genus g (or the related parameter y) of
the invariant surface of the classical billiard flow and the strength of the correlations in the
guantum spectrum. While for small g the spectral statistics is close to semi-Poisson (with a
dlight tendency towards Poisson), it approaches the GOE statistics when g isincreased. Our
numerical resultstogether with similar studies[11, 12] suggest that the spectral correlationsare
not stationary at currently accessible energies, but that the ordering with increasing correlation
strength and its correspondenceto g is conserved.

In the second part of the paper, we found that the classical parameters ¢ and y are
characteristic quantities for the matrix K(E) itself. For rational right triangle billiards, where
g isfinite, one gets an approximate foliation of the Hilbert spaceinto invariant subspaces. The
size of the subspaces scales with . Based on this observation, we discussed a mechanism
which can explain theinfluence of ¢ and y on the level statistics of right triangle billiards.

The definition of y in appendix A can be generalized to arbitrary polygon billiards as a
measure for the size of the invariant surface of the billiard flow in terms of the area of the
origina billiardtable. Inthisgeneral case, g and y must possibly be considered asindependent
parameters. Which of them isthen morerelevant for the correl ationsin the quantum spectrum?
This question may be studied considering classes of pseudo-integrable systems where ¢ and
y can be changed independently.
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Appendix A. The invariant surface for the classical billiard flow

There is an elegant way to represent a trgjectory moving in a polygon billiard, which is
particularly useful to construct the invariant surface of the classical billiard flow. It consists of
drawing the trajectory as a straight line, and reflecting the billiard (instead of the tragjectory)
each time the boundary is hit [2]. In the case of rational polygons, al possible trajectories
can produce only afinite number of differently oriented copies of the original polygon. Then
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Figure Al. (a) Typical right triangle. (b) Invariant surface of the billiard flow for the 1/8-triangle.
The dotted rhombus does not form part of the invariant surface. (c) Invariant surface of the billiard
flow for the 1/7-triangle. In (b) and (c), theinitial rhombuses with which the rosette constructions
are started arefilled. Vertices are labelled by capita letters, edges by lower case letters. However,
only such edges or vertices are labelled, which must be identified with one another to obtain the
invariant surface.

thereis a general recipe of how to glue these copies together in order to obtain the invariant
surface.

For rational right triangles, one may follow a more explicit construction scheme which
leadsto a particularly simpleinvariant surface, the ‘rosette’. It is constructed asfollows: start
with aright triangle asdepicted in figure Al. Reflecting thetriangleontheside AC, theimage
on the side BC and that image again on the side AC produces a rhombus (see figures A1(b)
and (¢)). Thisrhombusis rotated around point A by the angle 2« (counterclockwise) at each
step. Stop one step before arriving at the original rhombus or its point reflected image (see
figure A1(b)). Note, that the resulting surface may wind several times around A. As shown
below, the resulting surface can be closed by identifying open edges with one another, which
givesthe invariant surface.

The number of rotations by 2« isjust the smallest integer y suchthat 2« y /7 € N. We
could equally well rotate the rhombus step-wise by 28 around point B (see figures A1(b) and
(), resulting in a different representation of the invariant surface. However, as shown below,
the number of rotations (or rhombuses) necessary to close the invariant surface is the same.

Proof. Letp/q=o/m and p’/q’ = B/ withp, g and p’, ¢’ relatively prime.
1 / /
2y£=l=2y =_Z :>2y£=y—l
q 2 q q'
(A1)

/

2y 2 =l/=2y/<} - 3) =2 L=y
q 2 q q

Consider thefirst lineof (A.1). As2p < g, itfollowsy — | > 0. But y’ isthe smallest integer

suchthat 2y’ p’/q’ € N hencey’ < y. The same argument applied to the second line of (A.1)

showsy < y'. Therefore, y = v/. O

It remainsto provethat the above procedure givesindeed arepresentation of the invariant
surface, and to calculate its genus g. To thisend, we show that all free edges of the rosette can
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be identified with one another. Then the rhombuses define a triangularization of the invariant
surface, and counting al faces F, edges E and vertices V of the triangularization, we obtain
the genusviathe Euler characteristic[2]: g =1— x/2, x =V — E+ F.

The edges may be divided into inner edges which are connected to the centre of the
rosette, and outer edges which are not connected to the centre. Let us label both groups
counterclockwise by er,... and €, ... respectively, beginning with the lower edges of the
initial rhombus (seefigure A1, but note that the labels shown there are different, and used only
to identify different edgesin the representation of the invariant surface).

Let us first discuss the case where ¢ is odd. Then y = ¢ and the rosette winds p
times around its centre before the last inner edge can be identified with the first one (see
figureA1(c)). Inordertoidentify all outer edgesey, . . . , &, pairwisewith oneanother, observe
that for j: odd, atrajectory leaving the surface crossing ;3 would enter a triangle which is
theparallel trand ation of thetrianglewith the hypotenusee;. Inconsequence, both edgescan be
identified. Hence, one may identify the following edges: e; = €4, e3 =63, ..., 6,3 = &,
and there are only two open outer edges left: e, and e, _1 which can be identified with one
another on the same grounds.

The vertices in the representation of the invariant surface have to be identified taking
into account that edges identified previously have the same initial and end points (the triangle
connected to the edge defines an orientation). In this manner, it is shown that for g: odd,
the rosette (invariant surface) has y faces, 2y edges and 3 vertices. Hence x = 3 — y and
g=—-D/2

If g is even, then p (relatively prime) is odd and the rosette winds p/2 times around its
centre (see figure A1(b)) which means, that we have also two open inner edges: €] and e(yﬂ.
Identifying outer edges as explained above, we have two outer edges open: e and ez, 1. In
this case, weidentify € with ep, _1 and e, with e/y+1, which again closesthe invariant surface.
Note that due to the identification of outer edges with inner edges, the central point of the
rosette must be identified with the outermost points. The remaining points must be identified
as one single vertex B, if y iseven (seefigure A1(d)), otherwise they constitute two vertices
B and B’ (thiscaseis not shown). Hence, the rosette (invariant surface) has y faces, 2y edges
and 2 verticesif y iseven and 3 verticesif y isodd. Thisgivesy =2—y = g =y/2and
x=3—y = g=(y—1)/2, respectively.

Indl,g =(y —1)/2if y: odd, and g = y/2if y: even. Hence, g = int(y/2).
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