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Abstract
This article presents a new method to calculate eigenvalues of right triangle
billiards. Its efficiency is comparable to the boundary integral method and
more recently developed variants. Its simplicity and explicitness, however,
allow new insight into the statistical properties of the spectra. We analyse
numerically the correlations in level sequences at high level numbers (>105)
for several examples of right triangle billiards. We find that the strength of
the correlations is closely related to the genus of the invariant surface of the
classical billiard flow. Surprisingly, the genus plays an important role at the
quantum level also. Based on this observation, a mechanism is discussed which
may explain the particular quantum–classical correspondence in right triangle
billiards. Though this class of systems is rather small, it contains examples
for integrable, pseudo-integrable, and non-integrable (ergodic, weakly mixing)
dynamics, so that the results might be relevant in a more general context.

PACS numbers: 03.65.Ge, 03.65.Sq, 05.45.−a

1. Introduction

Polygon billiards have been studied both classically and quantum mechanically for roughly
20 years now [1]. These systems are situated right on the borderline between integrability
and chaos. They are usually divided into two classes: the rational polygon billiards where
all vertex angles are rational multiples ofπ , and the irrational ones where at least one vertex
angle is an irrational multiple ofπ .

In the first case there exist two constants of motion, so that one would expect integrability.
However, due to singularities in the billiard flow, the invariant surface of the flow is not
necessarily a torus (with genusg = 1), but may be of a more complicated topology
(1< g <∞). This produces a very complicated classical dynamics (see [2–4] and references
therein). The systems are called integrable ifg = 1 and pseudo-integrable [1] otherwise.
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In the second case (the irrational polygon billiards) there is no second constant of motion.
These systems are typically ergodic [2] and probably weakly mixing [5, 6], though the
Kolmogorov–Sinai entropy [7] is always zero.

Quantum and semiclassical calculations have been performed from the very beginning
[1, 8–10], but only recently [11–13] has it become possible to calculate sufficiently large level
sequences at sufficiently high energies, such that correlation properties could be analysed
directly. There are fundamental open questions:

(i) Do the correlations in the spectra of polygon billiards eventually become stationary at
sufficiently high energy?

(ii) Are there families of polygon billiards with common statistical properties (universality)?
(iii) What is the signature of classical pseudo-integrability in the quantum spectrum (quantum–

classical correspondence)?

On the one hand, there has been numerical evidence [13], that at very high energies the
spectra of irrational triangle billiards are statistically similar to spectra taken from the Gaussian
orthogonal ensemble (GOE). On the other hand, based on the numerical study of the spectra
of several rational right triangle billiards, it was proposed that pseudo-integrability implies a
so-called ‘intermediate statistics’ [12]. For the nearest neighbour distribution [14] this means:
linear increase at small spacings (as in the GOE case) and exponential fall-off at large spacings
(as for a random Poissonian sequence). Intermediate statistics has also been found in the
context of disordered systems at the metal–insulator transition point [15–17], which might
indicate some relationship between both classes of systems.

This paper is mainly concerned with question (iii). We consider the one-parameter family
of right triangle billiards, labelled by the value of the smallest vertex angle 0< α � π/4.
For this class, a secular equation is derived, which identifies the eigenvalues as zeros of
the determinant of a particular matrixK(E ). Though the matrix is infinite, its elements are
given explicitly by very simple expressions. This makesK(E ) an ideal point of departure for
numerical and analytical studies.

The most obvious characteristic of rational polygon billiards is the genusg of the invariant
surface of the classical Hamiltonian flow (the irrational polygon billiards can be included,
settingg = ∞). Hence, we will investigate in detail the relation betweeng and the correlations
in the quantum spectra. In the numerical part, level sequences are calculated at absolute
level numbers>105 for various examples of right triangle billiards. This provides valuable
complementary information to recent results from Bogomolnyet al [12]. In the analytical
part, the matrixK(E ) itself is considered. ThoughK(E ) is a pure quantum mechanical object,
it is shown thatg andγ (which is closely related tog) play a crucial role for iterated mappings
of the form�(n) = Kn(E)�(0). Based on this observation, a mechanism is proposed, which
can explain the connection between the genusg and the correlation properties of the quantum
spectrum.

In section 2 a secular equation is derived for the calculation of the eigenvalues of right
triangle billiards. It is used in section 3 to obtain and analyse the level spacing distributions
for several right triangles. In section 4 we analyse the properties of the matrixK(E ) itself, and
discuss the roles of the two classical parametersg andγ in this context. The conclusions are
presented in section 5.

2. Secular equation

Our point of departure is the observation that any right triangle can be obtained by cutting an
appropriate rectangle along its diagonal. This is used to derive a secular equation of drastically
reduced dimension for the eigenvalues of the right triangle billiard.
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Let H0 be the Hamiltonian for the rectangle billiard with sidesa andb. Fixing the length
scale bya2 + b2 = π2, the angleα: tanα = b/a suffices to characterize the system completely.
Choosing an arbitrary corner of the rectangle billiard as the origin of a Cartesian coordinate
system, its eigenvalues and the corresponding eigenfunctions may be written as follows:

ε(n,m) = 1

2

(
n2

cos2 α
+
m2

sin2α

)
n,m � 1 (1)

�nm(x, y) = 2√
ab

sin
(π
a
nx

)
sin

(π
b
my

)
. (2)

Consider the total HamiltonianH:

H = H0 + ηW W = δ
(x
a

− y
b

)
(3)

where the potentialηW is used to cut the rectangle billiard into two congruent right triangle
billiards (a similar cut potential, though in a different context, has been used in [18]). Asη

increases from 0 to∞, the spectrum ofH changes from the spectrum of the rectangle billiard
(1) to the doubly degeneratedspectrum of the two triangle billiards. For anyη, the Hamiltonian
H is invariant under point reflection, so that the matrix representation ofH in the eigenbasis of
H0 is block diagonal. One block is spanned by the odd basis states{�nm|n +m: odd} and the
other by the even ones{�nm| n +m: even}. Both blocks can be diagonalized independently,
leading to the same sequence of eigenvalues, which causes the degeneracy mentioned above.

In what follows we will work in the odd basis only. Letq = n + m andp = n − m, and
order the states (2) with increasingq, and for equalq with increasingp. Consider the subset
of states with fixedq andp = −q + 2,. . . , q − 2 as one block. Then truncating the basis at
a maximalq-valueqmax, one obtainsM = (qmax −1)/2 blocks withq−1 states in each block
(note thatq andp are odd). In total this givesN = (

q2
max− 1

)
/4 basis states. In this reordered

basis, the matrix elements ofW are given by

Wqp;q ′p′ =
∫ a

0
dx

∫ b

0
dy �nm(x, y)�n′m′(x, y) δ

(x
a

− y
b

)

= 1

2
{δ(|p| − |p′|) + δ(q − |p′|) + δ(q ′ − |p|) + δ(q − q ′)} (4)

wheren = (q + p)/2, m = (q − p)/2 (and similarly for the primed indices). For givenqmax,
the truncated matrixW (N ) has only two distinct eigenvalues: 0 andM + 1, and the eigenspace
of the latter has dimensionM (in other words: rank[W (N )] = M ). All eigenvectors with
eigenvalueM + 1 can be calculated explicitly, and after proper normalization we collect them
(as column vectors) in the rectangular matrixV:

Vqp;k = 1√
M + 1




0 nq < k√
k+1
k

nq = k
1

k(k+1) nq > k np < k + 1

−
√
k
k+1 nq > k np = k + 1

0 nq > k np > k + 1

(5)

wherek = 1, . . . ,M, nq = (q − 1)/2 andnp = (|p| + 1)/2. The truncated total Hamiltonian
may now be written as follows:

H(N) = H(N)0 + η(M + 1) V V T . (6)
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Dividing the Schr̈odinger equation(E −H(N))� = 0 byE −H(N)0 , one arrives, after a few
algebraic manipulations, at the desired secular equation. It determines the eigenvalues ofH (N)

as the zeros of the following determinant:

0 = det
(
1 +ηK̃(M)(E)

)
K̃
(M)
(E) = (M + 1) V T

1

E −H(N)0

V . (7)

Taking the limitη→ ∞, the unit matrix in the first equation of (7) can be neglected, and one
gets

detK̃(M)(E) = 0. (8)

The advantage of this equation is the reduced dimensionM � N = M(M + 1). Such a
reduction is typical for a boundary integral method (see, for example, [19]). The matrix
elements ofK̃(M) are given by the following expression:

K̃
(M)
ij = (M + 1)

qmax∑
q=1

q−2∑
p=−q+2

Vqp;i Vqp;j
E − ε ( q+p

2 ,
q−p

2

) q, p: odd. (9)

Being only interested in the zero eigenvalues ofK̃(M)(E), any (symmetric) similarity

transformationK(M) = LT K̃(M)Lmay be applied. The following choice forL simplifies the
problem considerably:

L = diag(1, . . . ,1/M)




1 −1
. . .

. . .

. . . −1
1


 diag

(
1, . . . ,

√
M(M + 1)

)
. (10)

The resulting matrixK (M)(E) is defined in the same way asK(E) in the equations (11)–(13)
below, but with the coefficientsDj = ∑M

i=0 dij . Only in the limitM → ∞, the expression
for Dj simplifies to the formula (14), as can be shown using the partial fraction expansion of
the cot function [20].

To summarize, the right triangle spectrum is calculated using the secular equation
det[K(E)] = 0, whereK(E) is constructed as follows:

K(E) = KF (E) +KD(E) . (11)

The matrix elements ofKF are given by

[KF ]ij = dij − di,j+1 − di−1,j + di−1,j+1
(12)

dij = d+
ij + d−

ij d±
ij = 1

e − q2 − p2 ± 2qp cos 2α

where the scaled energye = E/(2sin22α), q = 2i+1, and p = 2j − 1. Note that
q2+p2 ∓ 2qpcos(2α) = 2 sin2(2α) ε[(q ±p)/2, (q ∓p)/2], thusq andp may still be regarded
as auxiliary quantum numbers for the rectangle billiardH0. The matrixKD is tridiagonal:

[KD]jj = Dj +Dj+1 [KD]j,j+1 = [KD]j+1,j = −Dj (13)

with the coefficientsDj given by

Dj = π sinπω

2ω(cosπω + cosπp cos 2α)
ω = sin 2α

√
2e− p2. (14)

Even thoughω becomes imaginary for large values ofp, the affected functions sin and cos
convert into sinh and cosh, and finally the coefficientDj remains real. Its asymptotic behaviour
for largej isDj ∼ π/(2|ω|).
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This result is the basis for the analysis in sections 3 and 4. The infinite matrixK(E ), as
defined in (11)–(14), completely determines the spectrum of any right triangle billiard as the
set of zeros of its determinant. For numerical purposes,K(E ) must be truncated (see below),
but one may get important information also from an analysis of the infinite matrixK(E ) itself.

For numerical calculations (section 3),K(E ) is truncated, keeping only those elements
Kij (E) for which i, j � M. For meaningful results,M must be at least so large that
p2

max> 2e, pmax = 2M − 1 (see the definition ofp above equation (13)). Experience shows
that for accurate results (error less than 1% of the mean level spacing), one should increase
the size of the matrix further by approximately 10%. The zeros of det[K(E)] are identified
calculating the smallest eigenvalue in magnitude as a function ofE. Using a standard root
bracketing algorithm [21], we find those points at which the smallest eigenvalue ofK(E)
passes the zero axis. The eigenvalues ofK(E) are strictly decreasing functions ofE, and this
facilitates the root finding considerably. It allows us to take rather large steps (of the order of
the mean level distance) without running the risk of losing any roots.

3. Level spacing distributions

In the case of polygon billiards, the genusg of the invariant surface of the Hamiltonian flow
is the most obvious parameter to characterize the classical dynamics [2]. Hence, one may
expect an influence ofg on the level statistics of the corresponding quantum system. In this
section we investigate numerically whether the level statistics show a systematic dependence
ong. For several rational and one irrational right triangle, we calculate sequences of 104 levels
starting at the absolute level number 105 (Weyl’s law is used to determine the corresponding
energy). Note that even in this energy region, the level statistics are usually not stationary.
This has been demonstrated in [13] for several examples of rational and irrational triangle
billiards. This should be kept in mind in the discussion of the numerical results.

In the case of right triangle billiards, there is another relevant parameter intimately related
to g (see appendix A). This isγ , the smallest integer such that 2α γ/π ∈ N (in the irrational
case, we setγ = ∞). It is shown in appendix A thatγ is the smallest number of rhombuses
which must be glued together to form the invariant surface of the billiard flow. Moreover, we
find thatg = int(γ /2). Hence,γ implies a finer classification of the right triangle billiards
thang does.

Up to an irrelevant energy scale, all right triangles may be labelled and identified through
their smallest vertex angle 0< α � π/4. For rational right triangles one may also use the pair
of relatively prime integersp/q = α/π . This is done in table 1, where all rational right triangles
with g � 7 are arranged with increasingγ in the vertical direction, and with increasingα
in the horizontal direction. The parameterga is taken from [12], where it is introduced as
an ‘arithmetical genus’. The entries underlaid with a grey shade have been analysed there.
The grey-scale corresponds to different values ofga , as indicated in the last column. Further
below, we will compare our results with those of [12].

We analyse the level statistics by means of the nearest neighbour spacing distributionP(s)
(the spacings are normalized to unit mean). Recently, the question has been raised whether
the rational right triangles show intermediate statistics (i.e. a linear increase at smalls and
exponential fall-off at larges). A simple analytical example is the so-called ‘semi-Poisson’
distribution [12]:

PSP(s) = 4s e−2s . (15)
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Table 1. All rational right triangle billiards withg � 7, referenced by their smallest vertex angle
α/π = p/q, and ordered with respect tog andγ . The first two entries forg = ga = 1 are the
only integrable cases. The shaded entries refer to those cases analysed in [12], and the grey-scale
corresponds to the value ofga (introduced there) as indicated in the last column.
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Here, PSP(s) is simply used as a convenient reference to compare with. The following quantity
is plotted in figure 1:

,I (s) =
∫ s

0
ds′ {PNum(s

′)− PSP(s
′)} . (16)

The theoretical curves in figures 1(a) and (b) show the result for an infinite GOE spectrum,
where PNum(s′) is replaced by the corresponding level spacing distribution (taken from [22]).
While figure 1(b) shows the raw numerical data curves for various right triangle billiards,
figure 1(a) shows the corresponding smoothed curves, in order to allow the identification of all
the cases shown. For the smoothing, ‘natural smoothing splines’ have been used, as provided
in [23].

Let us first focus on the cases: p/q = 1/8, 1/5, 1/12, 1/7 and 3/16 (which correspond to a
successive increase of γ from 4 to 8), and α/π = (3−√

5)/4 (where γ = ∞). The,I -curves
for these cases are plotted in figure 1(a) with a solid line and dashed lines of different dash
lengths. Together with the results for the GOE and the Poisson ensemble (uncorrelated random
sequence), they roughly span a one-parameter family of curves,Iσ (s). The parameter σ may
be called ‘correlation strength’ and it may be calibrated, requiring that σ = 0 gives the Poisson
result (its graph is plotted in figure 4), σ = 1 the GOE result and σ = 1/2 the semi-Poisson
result. Note that,Iσ (s) is introduced solely to facilitate the discussion of our results, so that
it is not necessary to be more specific.

The ,I curve for the irrational right triangle billiard comes closest to the GOE result.
However, it remains almost in the middle between the semi-Poisson case and the GOE case
(σ � 3/4). Then follow the cases p/q = 3/16, 1/7 and 1/12, for which σ decreases in
approximately equal steps. The,I curve for p/q = 1/12 is closest to the semi-Poisson result
(σ ≈ 1/2). The last two curves with p/q = 1/5 and 1/8 tend slightly towards the Poisson
result. They are so close to each other that we would assign the same correlation strength to
both of them (σ � 1/2). In all, we may say that the correlation strength σ increases with
increasing γ .

Finally, we included two more cases: p/q = 1/10 and 3/14. In figure 1(a) the respective
,I curves are plotted with dotted lines. Thus, we can compare the ,I curves for the 1/5-
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(a)

(b)∆
I
(s

)
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Figure 1. Difference ,I(s) of the integrated level spacing distribution to the semi-Poisson case.
,I(s) is plotted for various values of α as indicated in (a). The abbreviation ‘ irr’ refers to
α = π(3−√

5)/4. Whereas (b) shows the raw data, (a) shows the corresponding smoothed curves
(details in the text). The GOE expectation (N → ∞ limit) is plotted in (a) and (b) as a dotted line.

and the 1/10-triangle (γ = 5), and the ,I-curves for the 1/7- and the 3/14-triangle (γ = 7).
Both cases show that even for right triangles with the same value for γ , the respective,I curves
may differ considerably. The relation between γ and the correlation strength is apparently not
very strict (at least not in the energy range considered).

In order to check that our conclusions do not depend on the particular choice of the corre-
lation measure, we repeated the analysis above using the number variance /2(l) [14] instead
of,I(s). The results were perfectly compatible, so that a more detailed discussion is omitted.

In the numerical analysis presented here, we concentrate on right triangle billiards with
small values for g and γ . The main reason is that there is certainly an energy scale below which
the quantum system cannot possibly ‘ recognize’ whether the two hypotenuse angles α and β
are rational or not. Without any knowledge about this scale, small g triangles are probably
the more reliable examples for the study of quantum signatures of pseudo integrability.
Hence, the triangles for which we can compare our results with those of [12] are only a few:
p/q = 1/8, 1/5, 1/12 and 1/7.

The results obtained in [12] agree with those presented here only up to a certain qualitative
level. Beyond, we find that the correlation strength has decreased considerably in almost all
cases. This is due to the higher energy region considered here which may result in the
rationality of the hypotenuse angles being more important. However, the,I curves of the first
group of right triangles (with 4 � γ � 6) changed much less then the others, such that the
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Figure 2. Portrait of the matrix K(E) for α = π/5, and E = 1.26 × 104. The grey scale corresponds
to the absolute value of the matrix elements.

separation between both groups has decreased. It seems that this separation was decisive for
the introduction of the arithmetical genus ga . The fact that this separation has become much
smaller now indicates that ga is probably not an appropriate alternative for g.

According to the numerical results presented in this section, it is possible to order the
right triangle billiards with respect to the strength of the correlations found in their spectra,
which coincides with that of increasing γ . This finding confirms the general conjecture that
the genus of the invariant surface of the classical billiard flow determines the strength of the
spectral correlations on the quantum level. Though the spectral correlations are apparently
not stationary at currently accessible energies, the ordering seems to be energy independent
as long as the level sequences to be compared start with the same absolute level number.

4. The elliptic map

In the first part of this section it is shown that the parameters g and γ (see appendix A)
associated with the classical dynamics of right triangle billiards are important characteristics
of the matrix K(E ) itself. On the one hand this may be surprising, because K(E ) arose from a
pure quantum mechanical approach (see section 2), but on the other, it is a strong indication
for the importance of classical pseudo-integrability on the quantum level. In the second part,
we present a tentative explanation for the dependence of the spectral statistics on g and γ .

In figure 2 the matrix K(E ) is portrayed for a typical case. The grey scale corresponds
to the absolute value of the matrix elements. It can be seen that most of the matrix elements
have vanishingly small absolute values. Large absolute values can be found only along the
diagonal and the first off-diagonals, which are due to KD, and on a ‘moon’ -like structure due
to KF (see equations (12)–(14)). The matrix elements [KF ]ij become large whenever the pair
of integers (i, j) is close to the zero-line of one of the two functions

f±(x, y) = e − 4
(
x2 + y2 ± 2xy cos 2α

)
(17)

where x, y are real and positive, and e is the scaled energy as used in equation (12).
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�y1 �y0

a0

a1

a−1

Figure 3. Schematic representation of the mapping �y1 = K(E)�y0 (for details see text).

The action of K(E) on a localized state may be described schematically by a double valued,
symmetric map as shown in figure 3. The square in the middle represents the matrix K(E) (cf
figure 2). An initial state �y0 localized at a given value a0 is mapped to �y1 = K(E)�y0 localized
at {a0, a−1, a1}, where a−1 and a1 are the two solutions of the equationf±(a0, x) = 0, for x> 0.
Hence, the map M associated with K(E) may be defined as follows: {a−1, a1} =Ma0. Let us
call it the ‘elliptic map’ . Due to f (x, y) = f (y, x), a0 ∈ Ma−1 and a0 ∈ Ma1. Consequently,
an orbit of such a map may be viewed as a doubly connected chain:

· · · a0 a2 a3a 1a 2a __ _3 a1 · · · (18)

According to that picture, the n-fold image �yn = K(E)n �y0 has localization peaks at the
positions {a−n, . . . , a0, . . . , an}. Surprisingly, M is isomorphic to the following extremely
simple map

ϕn±1 = ϕn ± 2α (19)

where the result should be taken modulo π , such that it remains in the interval [ −π/2, π/2 ).
This can be seen, using the following parametrization of the curve f±(x, y) = 0:(
x

y

)
=

√
E

(
sgn

(
π
2 − 2α + ϕ

)
cos(ϕ − 2α)

cos(ϕ)

)
ϕ ∈ [−π/2, π/2). (20)

Replacing y by an arbitrary point anof the map M, one gets the corresponding pair of conjugated
angles: cos(±ϕn) = an. Replacing x by an, one finds that ±ϕn must be mapped to ±ϕn − 2α
(mod π). It follows that

an = cos(±ϕn)
(21)

Man = {an−1, an+1} = {cos[±(ϕn − 2α)], cos[±(ϕn + 2α)]} .
From equation (19) it follows that any orbit is restricted to a set of γ points, where γ is the
smallest integer such that 2α γ/π ∈ N. It is the same γ which is introduced in appendix A as
the number of rhombuses forming the invariant surface of the billiard flow. Furthermore, the
periodicity of the map M is int(γ /2) which is just the genus of that invariant surface.

Here, in the second part of this section, we discuss a mechanism which can explain the
correspondence between the correlation properties of the quantum spectrum and the classical
parameter γ . The line of reasoning is as follows:
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1. The correlation properties of the triangle spectrum at a given energy E are closely related
to the correlation properties of the eigenvalues of K(E) in the vicinity of zero.

2. At sufficiently high energy, KD (11) can be considered as a random tridiagonal matrix
with eigenstates which are typically localized.

3. The matrix KF (11) has such a form that repeated multiplications of an initially localized
state with K(E) produce an increasing number of copies at different positions. The
positions are given by the elliptic map M.

4. If α is rational, all orbits of the elliptic map are periodic with period g and restricted to γ
points. This leads to an approximate foliation of the Hilbert space into weakly coupled
subspaces. For any irrational α, the elliptic map is ergodic, and all basis states of the
matrix K(E) are strongly coupled.

Point 3 has been treated in the first part of this section. The remaining statements are discussed
below.

Correlation properties of the eigenvalues of the matrix K(E). According to the secular
equation derived in section 2, the triangle eigenvalues are given by those energies at which at
least one eigenvalue of K(E ) becomes zero. Therefore, it seems plausible that the correlation
properties of the eigenvalues of K(E ) close to zero and the triangle eigenvalues are related.
To verify this, we calculate the spacing distribution for those two neighbouring eigenvalues
which have opposite signs (without unfolding). The distribution is obtained from 104 spacings,
taken at equidistant energies, with the step size adjusted to the mean level spacing of the
corresponding triangle spectrum.

In figure 4 we compare the results. In the rational case, figure 4(a), as well as in the
irrational case, figure 4(b), the ,I(s) curves for the eigenvalue pairs of K(E ) and for the
triangle spectra differ remarkably, though in figure 4(b) the agreement is somewhat better.
However, at least qualitatively, the results are as expected. In the rational case, figure 4(a), the
eigenvalue statistics for K(E ) show indeed very weak correlations, much weaker even than the
corresponding triangle spectrum. This can be seen from the ,I(s) curve which clearly tends
towards the Poisson result (note also the behaviour at large s). In the irrational case, figure 4(b),
both curves show relatively strong correlations.

Localization of the eigenstates of KD. The matrix KD is constructed in a simple manner from
the coefficients Dj (see equations (13) and (14)). These oscillate as functions of j, the index
of the basis of K(E), more and more rapidly while p2 approaches 2e. From a statistical point
of view, it then seems permissible to replace the arguments of the functions sin and cos by
appropriate random variables. Even though the statistical properties of the matrix elements
are very complicated, one may expect Anderson localization [24].

In figure 5 we show, for a typical case, a series of eigenstates of KD(E) ordered by their
respective eigenvalues. Only those states with eigenvalues in a small interval around zero
are shown. Many eigenstates are apparently localized. However, others are not, and spread
over a wide range of basis states. Usually those fluctuate only weakly and slowly, and their
eigenvalues decrease very slowly with energy (not shown). Their role is still unclear, and will
be the subject of future studies.

Foliation of the Hilbert space. Acting repeatedly with K(E) on an initially localized state �y0,
the first g images will spread and localize at points {a0, . . . , aγ−1} (here aγ−1 is identical to
a−1), as discussed in the first part of this section. Then, due to the periodicity of the elliptic
map, subsequent images spread only slowly away from these points. In the ideal case the
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spreading would stop due to Anderson localization, giving rise to an invariant subspace. In
the same way, an initial state localized in a different part of the Hilbert space would lead to
another invariant subspace, and so on—until possibly the whole Hilbert space would have
been decomposed into invariant subspaces. In the real system, such a foliation of the Hilbert
space occurs only approximately, and the subspaces become weakly coupled. Nevertheless,
one may expect that correlations are to some extent suppressed due to this mechanism.

For irrational α, where the elliptic map is ergodic, an initially localized state will spread
out (by repeated multiplication with K(E)) into the whole Hilbert space. No foliation of the
Hilbert space can occur, and one should expect correlations of similar strength as in the GOE
case.

5. Conclusions

We derived a new kind of secular equation for the determination of the spectra of right triangle
billiards. It involves the diagonalization of the matrix K(E) which has a particularly simple
and transparent structure. Based on this equation we calculated spectra at level numbers>105

for various examples of right triangle billiards, which shows the efficiency of the new method.
We found a clear correspondence between the genus g (or the related parameter γ ) of

the invariant surface of the classical billiard flow and the strength of the correlations in the
quantum spectrum. While for small g the spectral statistics is close to semi-Poisson (with a
slight tendency towards Poisson), it approaches the GOE statistics when g is increased. Our
numerical results together with similar studies [11, 12] suggest that the spectral correlations are
not stationary at currently accessible energies, but that the ordering with increasing correlation
strength and its correspondence to g is conserved.

In the second part of the paper, we found that the classical parameters g and γ are
characteristic quantities for the matrix K(E ) itself. For rational right triangle billiards, where
g is finite, one gets an approximate foliation of the Hilbert space into invariant subspaces. The
size of the subspaces scales with γ . Based on this observation, we discussed a mechanism
which can explain the influence of g and γ on the level statistics of right triangle billiards.

The definition of γ in appendix A can be generalized to arbitrary polygon billiards as a
measure for the size of the invariant surface of the billiard flow in terms of the area of the
original billiard table. In this general case, g and γ must possibly be considered as independent
parameters. Which of them is then more relevant for the correlations in the quantum spectrum?
This question may be studied considering classes of pseudo-integrable systems where g and
γ can be changed independently.
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Appendix A. The invariant surface for the classical billiard flow

There is an elegant way to represent a trajectory moving in a polygon billiard, which is
particularly useful to construct the invariant surface of the classical billiard flow. It consists of
drawing the trajectory as a straight line, and reflecting the billiard (instead of the trajectory)
each time the boundary is hit [2]. In the case of rational polygons, all possible trajectories
can produce only a finite number of differently oriented copies of the original polygon. Then
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Figure A1. (a) Typical right triangle. (b) Invariant surface of the billiard flow for the 1/8-triangle.
The dotted rhombus does not form part of the invariant surface. (c) Invariant surface of the billiard
flow for the 1/7-triangle. In (b) and (c), the initial rhombuses with which the rosette constructions
are started are filled. Vertices are labelled by capital letters, edges by lower case letters. However,
only such edges or vertices are labelled, which must be identified with one another to obtain the
invariant surface.

there is a general recipe of how to glue these copies together in order to obtain the invariant
surface.

For rational right triangles, one may follow a more explicit construction scheme which
leads to a particularly simple invariant surface, the ‘ rosette’ . It is constructed as follows: start
with a right triangle as depicted in figure A1. Reflecting the triangle on the sideAC, the image
on the side BC and that image again on the side AC produces a rhombus (see figures A1(b)
and (c)). This rhombus is rotated around point A by the angle 2α (counterclockwise) at each
step. Stop one step before arriving at the original rhombus or its point reflected image (see
figure A1(b)). Note, that the resulting surface may wind several times around A. As shown
below, the resulting surface can be closed by identifying open edges with one another, which
gives the invariant surface.

The number of rotations by 2α is just the smallest integer γ such that 2α γ/π ∈ N. We
could equally well rotate the rhombus step-wise by 2β around point B (see figures A1(b) and
(c)), resulting in a different representation of the invariant surface. However, as shown below,
the number of rotations (or rhombuses) necessary to close the invariant surface is the same.

Proof. Let p/q = α/π and p′/q ′ = β/π with p, q and p′, q ′ relatively prime.

2γ
p

q
= l = 2γ

(
1

2
− p

′

q ′

)
⇒ 2γ

p′

q ′ = γ − l
(A.1)

2γ ′ p′

q ′ = l′ = 2γ ′
(

1

2
− p
q

)
⇒ 2γ ′ p

q
= γ ′ − l′.

Consider the first line of (A.1). As 2p< q, it follows γ − l> 0. But γ ′ is the smallest integer
such that 2γ ′ p′/q ′ ∈ N hence γ ′ � γ . The same argument applied to the second line of (A.1)
shows γ � γ ′. Therefore, γ = γ ′. �

It remains to prove that the above procedure gives indeed a representation of the invariant
surface, and to calculate its genus g. To this end, we show that all free edges of the rosette can
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be identified with one another. Then the rhombuses define a triangularization of the invariant
surface, and counting all faces F, edges E and vertices V of the triangularization, we obtain
the genus via the Euler characteristic [2]: g = 1 − χ/2, χ = V − E + F .

The edges may be divided into inner edges which are connected to the centre of the
rosette, and outer edges which are not connected to the centre. Let us label both groups
counterclockwise by e1, . . . and e′

1, . . . respectively, beginning with the lower edges of the
initial rhombus (see figure A1, but note that the labels shown there are different, and used only
to identify different edges in the representation of the invariant surface).

Let us first discuss the case where q is odd. Then γ = q and the rosette winds p
times around its centre before the last inner edge can be identified with the first one (see
figure A1(c)). In order to identify all outer edges e1, . . . , e2γ pairwise with one another, observe
that for j: odd, a trajectory leaving the surface crossing ej+3 would enter a triangle which is
the parallel translation of the triangle with the hypotenuse ej. In consequence, both edges can be
identified. Hence, one may identify the following edges: e1 ≡ e4, e3 ≡ e6, . . . , e2γ−3 ≡ e2γ ,
and there are only two open outer edges left: e2 and e2γ−1 which can be identified with one
another on the same grounds.

The vertices in the representation of the invariant surface have to be identified taking
into account that edges identified previously have the same initial and end points (the triangle
connected to the edge defines an orientation). In this manner, it is shown that for q: odd,
the rosette (invariant surface) has γ faces, 2γ edges and 3 vertices. Hence χ = 3 − γ and
g = (γ − 1)/2.

If q is even, then p (relatively prime) is odd and the rosette winds p/2 times around its
centre (see figure A1(b)) which means, that we have also two open inner edges: e′

1 and e′
γ+1.

Identifying outer edges as explained above, we have two outer edges open: e2 and e2γ−1. In
this case, we identify e′

1 with e2γ−1 and e2 with e′
γ+1, which again closes the invariant surface.

Note that due to the identification of outer edges with inner edges, the central point of the
rosette must be identified with the outermost points. The remaining points must be identified
as one single vertex B, if γ is even (see figure A1(b)), otherwise they constitute two vertices
B and B

′
(this case is not shown). Hence, the rosette (invariant surface) has γ faces, 2γ edges

and 2 vertices if γ is even and 3 vertices if γ is odd. This gives χ = 2 − γ ⇒ g = γ /2 and
χ = 3 − γ ⇒ g = (γ − 1)/2, respectively.

In all, g = (γ − 1)/2 if γ : odd, and g = γ /2 if γ : even. Hence, g = int(γ /2).
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